Names
This API tries to determine what words in a given input correspond to a first-name and/or last-name.
Although this task may seem simple, in many cultures some first names can also be last names, which can cause some confusion. For example, the name Franco can be both a
first name as a family name, making it hard to label.
We recommend using this API in combination with the Gender API.
Prediction labels
Limits
The maximum length accepted is 512 characters.
| Label | Example | 
|---|---|
| first_name | Carlota, Peter, Richard | 
| last_name | reynosa, Ericson, Aguirre | 
| unknown | tripod, careless | 
Invokation
- cURL
- Python
- PHP
curl -L -G 'http://api.textkit.ai/detect/names' \
    --data-urlencode 'text=Carlota Reynosa wasnt careless' \
    --header 'X-API-Key: your_api_key_here' 
import requests
url = "https://api.textkit.ai/detect/names?text=Carlota Reynosa wasn't careless"
payload={}
headers = {
  'X-API-Key': 'your_api_key_here'
}
response = requests.request("GET", url, headers=headers, data=payload)
print(response.text)
<?php
$curl = curl_init();
$url = "https://api.textkit.ai/detect/names?text=" . urlencode("Carlota Reynosa wasn't careless");
curl_setopt_array($curl, array(
  CURLOPT_URL => $url,
  CURLOPT_RETURNTRANSFER => true,
  CURLOPT_ENCODING => '',
  CURLOPT_MAXREDIRS => 10,
  CURLOPT_TIMEOUT => 0,
  CURLOPT_FOLLOWLOCATION => true,
  CURLOPT_HTTP_VERSION => CURL_HTTP_VERSION_1_1,
  CURLOPT_CUSTOMREQUEST => 'GET',
  CURLOPT_HTTPHEADER => array(
    'X-API-Key: your_api_key_here'
  ),
));
$response = curl_exec($curl);
curl_close($curl);
echo $response;
Response
{
    "prediction": {
        "first_name": [
            "carlota"
        ],
        "last_name": [
            "reynosa"
        ],
        "unknown": [
            "wasn't",
            "careless"
        ]
    },
    "confidence": "1",
    "time_ms": 37
}
| Field | Meaning | 
|---|---|
| prediction | The predicted label. See above for reference | 
| confidence | Value between 0and1that indicates how confident the model is | 
| time_ms | Time in milliseconds the model took to predict the label. It does not account for the network round trip time between request and response |